
Beyond the macho approach of
artificial intelligence: empower

human designers do not
replace them

G Fischer and K Nakakoji*

Designers deal with ill defined and wicked problems that
are characterized by fluctuating and conflicting require-
ments. Traditional design methodologies that are based on
the separation between problem setting (analysis) and
problem solving (synthesis) are inadequate for the solution
of these problems. The supporting of design with
computers requires a cooperative problem-solving
approach that empowers designers with integrated,
domain-oriented, knowledge-based design environments.

The paper describes the motivation for the latter
approach, and introduces an architecture for such design
environments. It focuses on the integration of specification,
construction, and a catalogue of prestored design objects in
those environments to illustrate how such integrated design
environments empower human designers. The CatalogEx-
plorer system component, which is described in detail,
assists designers in the location of examples in the cata-
logue that are relevant to the task at hand, as partially
articulated by the current specification and construction.
Users are thereby relieved of the tasks of forming queries
or navigating in information spaces. The last part of the
paper discusses the relationship of the work with the con-
ceptual framework developed by Donald Sch6n.

Keywords: integrated, domain-oriented, knowledge-based
design environment, design-support systems, coevolution of

Department of Computer Science and Institute of Cognitive Science,
University of Colorado, Boulder, Colorado 80309-0430, USA
*At the above address, and at the Software Engineering Laboratory,
Software Research Associates Inc., 1-1-I Hirakawa-cho, Chiyoda-ku,
Tokyo 102, Japan
The paper is a substantially revised and extended version of the paper
that appeared in Gero, J (F_xl.) Artificial Intelligence in Design Butter-
worth-Heinemann, UK (1991) (Proc. Artificial Intelligence in Design
'91 Conf. Edinburgh, UK (25-27 Jun 1991)).
Revised paper received 9 September 1991. Accepted 24 October 1991

problem setting and problem solving, relevance to the task
at hand, reflection in action, multifaceted architecture,
user interfaces for design, computer-supported cooperative
work

Design is an ill defined ~ or wicked 2 problem that has
fluctuating and conflicting requirements. Early design
methods, which are based on directionality, causality,
and the separation of analysis from synthesis, are inade-
quate for the solution of such problems 3.

The research effort discussed in this paper is based on
the assumption that these design problems are best
solved by the support of a cooperative problem-solving
approach between humans and integrated, domain-
oriented, knowledge-based design environments 4. The
combination of knowledge-based systems and innovative
human-computer communications techniques em-
powers humans to produce 'better' products by aug-
menting their intellectual capabilities and productivity,
rather than simply by the use of an automated system 5.

The authors' approach is not that of building another
expert system. Expert systems require a rather complete
understanding of a problem to start with. This is an
assumption that does not hold for ill defined problems.
For a set of rules to be produced for an expert system, the
relevant factors and the background knowledge need to
be identified. However, this information cannot be fully
articulated. What has been made explicit always sets a
limit, and there exists the potential for breakdowns that
require a move beyond this limit 6.

This paper uses the domain of the architectural design
of kitchen floor plans as an 'object to think with', for the
purposes of illustration. The simplicity of the domain
helps in concentration on the essential issues of the
approach, without distraction by understanding of the
semantics of the domain itself. General issues of design

Vol 5 No 1 March 1992 0950-7051/92/010015-16 © 1992 Butterworth-Heinemann Ltd 15

environments are first discussed, with emphasis on the
importance of domain orientation and integration of
these environments. Then, the multifaceted architecture
that underlies these environments is described. This
serves as a conceptual framework for the research. These
environments support three important design concepts:
(a) reflection in action, (b)" the evolution of individual
design projects and design environments, and (c)
information being made relevant to the task at hand.
CatalogExplorer, an innovative system component, illus-
trates how the integrated environment empowers human
designers in terms of the third notion. CatalogExplorer
integrates specification, construction, and a catalogue of
prestored design objects. The synergy of this integration
enables the system to retrieve design objects that are
relevant to the task at hand, as articulated by a partial
specification and construction, thereby relieving users of
the tasks of forming queries or navigating in information
spaces for retrieval. Related work, and the achievements
and limitations of the system, are briefly described. The
last part of the paper discusses the relationship of the
work to the conceptual framework developed by Donald
Sch6nT. 8.

PROBLEMS

Integration of problem setting and problem solving

The integration of problem setting and problem solving
is indispensable for design problems that are character-
ized as ill defined problems 7. As Simon mentioned 9, com-
plex designs are implemented over a long period of time,
and they are continually modified during the whole
design process. Simon stated that they have much in
common with painting in oil, where current goals lead to
new applications of paint, while the gradually changing
pattern suggests new goals. One cannot gather infor-
mation meaningfully unless one has understood the
problem, and one cannot understand the problem with-
out having information about it. Professional practi-
tioners have at least as much to do with the definition of
the problem as with the solution of the problemL

An empirical study by the authors' research group,
which analysed human-human cooperative problem solv-
ing between customers and sales agents in a large hard-
ware storO °, provided ample evidence that, in many
cases, humans are initially unable to articulate complete
requirements for ill defined problems. Humans start
from a partial specification, and refine it incrementally,
on the basis of the feedback that they get from their
environment.

In designing, this feedback is provided by the 'back
talk of the situation '7. While engaging in a 'conversation
with the design material', designers become aware of an
occurrence of a breakdown. This awareness is triggered
by evaluation and appreciation of the current design
stage (artefact) in terms of their task at hand (goal). The
evaluation is carried out either by the designers them-
selves, or by outside agents, such as design teachers or
computational agents (such as critics), in design environ-
ments. This reflection of the action results in the determi-
nation of a next move in problem setting and in problem
solving.

The integration of problem setting (analysis) and
problem solving (synthesis) is not supported in first-

generation design methodologies or in traditional
approaches to software design ~. Automated design
methodologies fail, because they need a complete
requirement specification to be established before design
is started.

Domain orientation

While computers are regarded as a design medium, it is
necessary to reduce the great transformation distance
between a design substrate and an application domain ~2.
Designers should perceive design as communication with
an application domain, rather than as the manipulation
of symbols on computer displays. The computer should
become invisible by supporting human problem-domain
communication, and not just human-computer commu-
nications j3. Human problem-domain communication
provides a new level of quality in human-computer com-
munications by building the important abstract ope-
rations and objects in a given area directly into a
computer-supported environment. Such an environment
allows designers to design artefacts from applications-
oriented building blocks of various levels of abstraction,
according to the principles of the domain.

Retrieval of information relevant to task at hand

In the support of the integration of problem setting and
problem solving in design environments, the identifica-
tion of information that is relevant to the task at hand is
crucial. Every step made by a designer towards a solution
determines a new space of related information, which
cannot be determined a priori, owing to its very nature.
Integrated design environments are based on high-func-
tionality systems ~4 that contain a large number of design
objects. High-functionality systems increase the likeli-
hood that an object exists that is close to what is needed,
but, without adequate systems support, it is difficult to
locate and understand the objects 15,16.

The task at hand is usually represented in terms of a
problem domain rather than a solution domain. This
leads to the inapplicability of conventional database
retrieval techniques ~7, which require humans to articulate
what they are looking for by formulating a highly speci-
fic query in terms of a solution domain. For example,
suppose that a novice designer wants to design a floor
plan for a safe kitchen. Given hundreds of fancy pictures
of kitchen floor plans in a catalogue, it is difficult for the
designer to access the information that is relevant to the
task, namely useful floor plans for the design of a safe
kitchen (see Figure 1). If users can articulate what they
need, a query-based search can lessen the burden of the
location of promising objects ~8.

With navigational access provided by a browsing
mechanism, users tend to get lost while wandering
around in the space looking for some target information
if the space is large and the structure is complex ~9. Navi-
gational access requires the information space to have a
fairly rigid and predetermined structure, making it
impossible to tailor the structure according to the task at
hand. Browsing mechanisms become useful once the
space is narrowed by the identification of a small set of
relevant information.

Design environments need other mechanisms (as dis-
cussed in this paper) that can identify small sets of

16 Knowledge-Based Systems

0 9 e

0

~ataloa ExarnDleS

Figure 1. Location of relevant information to task at hand
[There is no clue to help the designer to access information in the
catalogue (solution domain) that is relevant to the task at hand, i.e. what
the designer has in mind when requesting a safe kitchen (problem
domain).]

~~ . Design Creation

/ ~ / ~ Feedback
I / Case-Based Simulation

Critics Reasonina \
. I . .

~ ~ ~ Domain Knowledge

Figure 2. Elements of multifaceted architecture

objects that are relevant to the task at hand. Users must
be able to articulate incrementally the task at hand. The
information provided in response to these problem-solv-
ing activities based on partial specifications and con-
structions must assist users to refine the definition of
their problem.

M U L T I F A C E T E D A R C H I T E C T U R E F O R
I N T E G R A T E D D E S I G N E N V I R O N M E N T S

During 1987-1991, several prototype systems of domain-
oriented design environments 2°,2] have been developed
and evaluated. These different system-building efforts
help in the definition of a multifaceted architecture,
which consists of five elements (see Figure 2): (a) specifi-
cation, (b) construction in support of design creation, (c)
an argumentation base, (d) a catalogue base, and (e) a
semantic base, as information depositories for domain
knowledge. Figure 3 shows the interface components of
the multifaceted architecture from a user's point of view.
These components are described below in the context of
the Janus system. The domain of Janus is the architec-
tural floor-plan design of a kitchen. The system is imple-
mented in COMMON LISP, and it runs on Symbolics LISP
machines. Currently, Janus consists of four major sub-
systems: Janus Construction, Janus Argumentation,
CatalogExplorer and Janus Modifier]6. Each subsystem
supports different aspects of the architecture.

Although the importance of domain orientation has
been emphasized, this architecture should not be
regarded as a specific framework for a certain domain.
On the contrary, it is assumed that the architecture pre-
sented in this paper serves as a generic framework for the
construction of a class of doffaain-specific environments.

Components of multifaceted architecture

Integrated design environments that are based on the
multifaceted architecture are composed of the following
five interface components (see Figure 3):

• A construction kit is the principal medium for the
implementation of design. It provides a palette of
domain abstractions, and it supports the construction
of artefacts, using direct manipulation and other
interaction styles. A construction represents a con-
crete implementation of a design, and it reflects a
user's current problem situation. Figure 4 shows the
screen image of Janus Construction, which supports
this role.

• An issue-based argumentative hypermedia system cap-
tures the design rationale. Information fragments in
the hypermedia issue base are based on an issue-based
information system 22 (IBIS), and they are linked
according to what information resolves an issue that
is relevant to a partial construction. The issues,
answers and arguments held in Janus Argumentation
(see Figure 5) can be accessed via links from the
domain knowledge in other components.

• A catalogue (see Figures 4 and 6) provides a collection
of prestored design objects that illustrates the space of
possible designs in the domain. Catalogue examples
support reuse and case-based reasoning 23,24.

• A specification component (see Figure 7) allows
designers to describe some required characteristics of
the design at a high level of abstraction, and it assigns
weights of the importance to each specified item. The
specifications are expected to be modified and aug-
mented during the whole design process, rather than
to be fully articulated before the design is started.
They are used to prioritize all the information spaces
in the system with respect to the emerging task at
hand.

• A simulation component allows 'what-if' games to be
carried out to allow designers to simulate usage
scenarios with the artefact that is being designed.
Simulation complements the argumentative compo-
nent.

Integration in multifaceted architecture

The architecture derives its essential value from the
integration of its components and links between the com-
ponents. Used individually, the components cannot
achieve their full potential. Used in combination, how-
ever, each component augments the value of the others, a
synergistic whole being formed. Links between the com-
ponents of the architecture are supported by various
mechanisms (see Figure 3). The major mechanisms
included are listed below.

The Construction Analyzer is a critiquing compo-
nent 25 that detects and critiques partial solutions, con-
strutted by users, based on domain knowledge of
design principles. The firing of a critic signals a break-
down to designers 6, warning them of potential
problems in the current construction, and providing
them with an immediate entry into the exact place in
the argumentative hypermedia system where the cor-
responding argumentation lies (see Figures 4 and 5).

Vol 5 No 1 March 1992 17

verif~J Cons t ruc t ion L~ f°rm
Kit ~ .. Construction

P2mit~ f cons t ra in / I reuse ' ' ~ x ' ~ ' Analyzer

I simu~ati°n I / l -x~x~
[Component [/ /

' / I reduce, ~ critique,
scenarios [/ | search IArgumentative I

[/ [~ Hypermedia I
inform1 modify. / ~ ._ . . - . . - - - - - ""~ I • I

, .' . r I I ca e-b I SP ecificati°n ~ | I /reasoning
I C°mp°nent [modifY-- " f ~l ,-///

modify ~ .,,.,-f""- V I =d . ce ~Zr/'-.--...,.
/ / " search ~ / ~.

~ r e d ~ Catalog ~ e Illustrator

CataloeExplorer

Figure 3. Interface components for multifaceted architecture
[Support for links between the components is crucial for synergy of integration.]

• The Argumentation Illustrator helps users to under-
stand the information given in an argumentative
hypermedium by using a catalogue design example as
a source of concrete realization (see Figure 5). The
explanation given as an argumentation is often highly
abstract and very conceptual. Concrete design exam-
ples that match the explanation help users to under-
stand the concept.

• CatalogExplorer, described below in detail, helps
users to search the catalogue space according to the
task at hand. It retrieves design examples that are
similar to the current construction situation, and it
orders a set of design examples by their appropriate-
ness to the current specification.

Design within multifaceted architecture
Design environments based on the multifaceted architec-
ture support the following three design activities:

Reflection in action." Design (as supported by the mul-
tifaceted architecture) iterates through cycles of speci-
fication, construction, evaluation and reuse in the
working context. At each stage in the design process,
the partial design that is embedded in the design
environment is a stimulus that suggests what users
should attend to next. The direction to new subgoals
permits new information to be extracted from
memory and reference sources, and it leads to new
steps towards the development of the design. The
integration of various aspects of design enables the
situation to 'talk back' to users 7, following the charac-
terization of design activities by Sch6n (the terms in
square brackets are the authors' annotations):

The designer shapes the situation in accordance with his initial

appreciation of it [construction], the situation 'talks back' [critics],
and he responds to the situation's back-talk. In a good process of
design, this conversation with the situation is reflective. In answer
to the situation's back-talk, the designer reflects-in-action on the
construction of the problem [argumentation].

The relationship of the authors' approach to that of
Sch6n is further discussed below.

• Evolution of individual design projects and design
environments: Figure 8 shows the coevolution of spe-
cification and construction in an environment that is
based on the multifaceted architecture. A typical cycle
of events in the environment includes the following:
(a) designers create a partial specification or a partial
construction, (b) they do not know how to continue
with this process, and so (c) they switch and consult
other components in the system that provide them
with information that is relevant to the partially arti-
culated task at hand, and (d) they are able to refine
their understanding on the basis of the back talk of
the situation. As designers go back and forth between
the components, the problem space is narrowed, and
different facets of the artefact are refined. A com-
pleted design artefact (consisting of a specification
and a construction) may be stored in the catalogue for
later reuse. Through this process, the environment
gradually evolves by being constantly used.

• Articulation of the task at hand." The integration
enables the system to understand incrementally the
task at hand. Suppose that a user is designing a kit-
chen as shown in Figure 9. In this example, the par-
tially articulated task at hand is the determination of
the location of a dishwasher in the given construction
so that the kitchen will be safe and good for a left-
handed person who has a small child. On the basis of
this articulation, the system provides the user with
relevant information without forcing the user to form

18 Knowledge-Based Systems

,_l~nu~-Cons~Pucf; ion

Ippllw'~e Palettm

w a l l

n door|

w|ndOWS

strdcs

Stoves

Catalog

Clear Work Area Constrain Design Unit, a CrltiQu¢ All
t 'd i t Global Descriptions Load Catalog Save In CaCalo9

Selecl, Context

Murk Area

One-Wall-Kitchen

M e s s a g e ~

I " D o u b l e - B o w l - S i n k - I i~ n o t ne*r F o b - E l e m e n t - S t o v e - I .
• Tt~e ler~gth of the work ttilti 'lgle (O0uble-Bowl-~Jrlk-1) Fout-Elemenc-Stove-1 t

Gi~lle Oonr-.Refr;gerator-1) i$ 9rearer than 2 0 f e e t
I;_-~:¢i~i;,-.-,Ttc'~st_~_*~_- I ;, .or ,w,y f~o~ LR;.qht'Hi"~d-Door-2.1

%

Commands
IP ~Zho~ th 'gu~nee f ton f~ cl*~ion u~zt ru l~) s too~-door - ru la l~

k o n I)~O U ~ LI[~. : l I~er" I t ~ u t

Figure 4. Janus Construction
[Building blocks (design units) are selected from the palette, and moved to desired locations inside the work area. Designers can reuse and redesign
complete floor plans from the catalogue. The messages pane displays critiques automatically after each design change that triggers such a critic
message (carried out by the Construction Analyzer). Clicking with the mouse on a message activates Janus Argumentation, and displays the
argumentation related to that message (see Figure 5).]

queries or navigate through large information spaces
to locate relevant information. This process is des-
cribed in more detail below. By retrieving information
in the same environment, the system can analyse
usage patterns of the retrieved information and use
them for refining the retrieval.

C A T A L O G E X P L O R E R

This section of the paper describes CatalogExplorer,
which links the specification and construction compo-
nents with the catalogue (see Figure 3), followed by a
scenario that illustrates a typical use of the system. Then,
the underlying mechanisms used in the scenario are des-
cribed in more detail, with the mechanisms of retrieval
from specification and retrieval from construction.

System description

Design objects stored in a catalogue can be used for (a)
providing a solution to a new problem, (b) warning of
possible failures, and (c) evaluating and justifying the
decision 23,26. The catalogue provides a source for differ-
ent ideas in the same way as do the commercial cata-
logues that are shown by a professional kitchen designer
to customers to help them understand their needs and

make decisions. For large catalogues, the identification
of design examples that are relevant to the task at hand
becomes a challenging and time-consuming task (see
Figure 1).

By integrating specification, construction and a cata-
logue, CatalogExplorer helps users to retrieve infor-
mation that is relevant to the task at hand, and, as a
result, it helps users to refine their partial specification
and partial construction. Users need not form queries or
navigate in a catalogue space to retrieve design objects
from a catalogue, because their task at hand is partially
articulated by a partial specification and construction.

The design examples in the catalogue are stored as
objects in the Kandor 27 knowledge base. Each design
example consists of a floor layout and a set of slot values.
The examples are automatically classified according to
their features specified as these slot values. Each design
example can be (a) critiqued and praised by the Con-
struction Analyzer, and (b) marked with a bookmark,
which provides users with control in the selection of
design examples and the forming of a task-specific small
subset of the catalogue.

CatalogExplorer is based on the Helgon system :s,
which instantiates the retrieval-by-reformulation para-
digm 29. It allows users to improve incrementally a query
by critiquing the results of previous queries. Reformula-

Vol 5 No 1 March 1992 19

J a n u s - A r g u m e n ~ r.i o n In c~,,,,,.,, E.,.,~,,,

A n s w e r (S t o v e , Door)

The stove should be away from a door.

F i g u r e 5;: s t o v e - d o o r

A r g u m e n t (FIPe Hazard)
By placing the stove too close to a door it ~i l l be • f i re and
burn hazard to unsuspected passers by (such as small chitdren)l

Argtmlmnt (D in ing R o o m)
I f the door leads into a dining room, it will be easy to brin 9 hot
food fro~l the stove into the dining areal

StOve iS away from Door.

VlaltedNodea
ffnsuer (Stove, Sink) Sectlon
Rnsuer (Stove, ~4ndow) Section
IsIve (StOVe) Section
Rnsuer (S~nk, Nlndo~] $ect lon
Rnsuer ($~nk, Dish~eshet) Section

• Rnsuer (Shove. DOor) Section

Viewer: Default Viewer J ~

Conmuw~fa Sho~ Outli~e Return(Constructic~

Figure 5. Janus Argumentation
[The screen image shows an answer to the question ofwhere to locate the kitchen stove with respect to a door, and it graphically indicates the desirable
relative positions of the two design units. Below this is a list of arguments for and against the answer. The example in the upper right-hand comer
(which is activated by the 'show example' command in the commands pane) contextualizes an argumentative principle in relation to a specific design
(done by the Argumentation Illustrator).

tion allows users to search iteratively for more appropri-
ate design information, and to refine their specification,
rather than be constrained to their initial specified
query 17.

On the basis of the retrieval-by-reformulation para-
digm, CatalogExplorer retrieves design objects that are
relevant to the task at hand by using the following
mechanisms:

• It exploits the information articulated in a partial
specification to prioritize the designs stored in the
catalogue (retrieval from specification).

• It analyses the current construction, and retrieves
similar examples from the catalogue using similarity
metrics (retrieval from construction).

Scenario with CatalogExplorer

CatalogExplorer (see Figure 6) is invoked by the cata-
logue command from Janus Construction (see Figure 4).
The specify command provides a specification sheet (see
Figure 7a) in the form of a questionnaire. After specifica-
tion, users are asked to assign a weight to each specified
item in a weighting sheet (see Figure 7b).

The specified items are shown in the specification
window in Figure 6. By clicking on one of the specified
items, users are provided with physical necessary-con-

dition rules (specification-linking rules) for a kitchen
design to satisfy the specified item, as seen in the two
lines in the middle of the specification window in Figure
6. With this information, users can explore the argu-
ments behind the rules. The shown condition rules are
mouse-sensitive, and clicking on one of them activates
Janus Argumentation, providing more detailed infor-
mation. Figure 5 illustrates the rationale behind the rule
'the stove should be away from a door if a user wants a
kitchen to be safe'. By the retrieve from specification
command being invoked, the design examples of the
catalogue are ordered (see the matching designs window
in Figure 6) by appropriateness values to the specified
items.

Users can then retrieve design examples that are simi-
lar to their current construction. When invoking the
retrieve from construction command, users are asked to
choose a criterion (parsing topic) for the definition of the
similarity between the current construction and design
examples in the catalogue. When users choose 'design
unit types' as a parsing topic, a menu comes up, as shown
in Figure 10, that allows the user to select all or some of
the design unit types being used in the current construc-
tion. In Figure 10, a user has selected all the appliances
that were used in the construction of Figure 4. The
system then retrieves examples that contain the specified
design unit types.

The above interactions gradually narrow the catalogue

20 Knowledge-Based Systems

Czsczslog Explorer

~9 Matching Designs
one-wan-kitchen <tao~
khaldount-kit¢l~n (:.~o>
I-shaped-kitchen < t40; ,
learning-example-1 <~Ao>
umehsped-kitcl~n ¢~40>

kumiyo$-kitchen < t . ~ ; '
laarning-~xa~npl¢-3 <~Jo>
coPPidor-kJ t chen¢ 1..~ >
9erttards-kitchen <t.to;
island-corner (I.. '0>
island-kltchen <t.tO>
davids-kitchen < I.oo.~
learnlng-example-4 <:~0o>
stoats-kitchen <t~#;
jonathana-ki t~;hen <oJ~>
]eerning-example-Z <o,lo>
endS-kitchen < o ~
helga-kitchcn <o]0P

m/ulmrkal
J anathans-Kit~chcn
Gerhaede -K i t c l ~n
Kumiyos-Kitchen

Specify
I~etxieve
Re~urn¢ Con~ta'uct.lon

One of tJ~ Matching Design Examples
THING
KITCHEN
EURGPEt~IN-STYLE -KITCHEN
0NE-~ALL-KITCHEN

On,e-b)allmKit,c hen

hUTHOR Floover
CREATION-DhTE 61271gt3
MODIFIC~TIC)N-DATE 6/27/9(3
51~PE 0NE-tVALL
STYLE EUROPERt!
ANN01ATION l yPical L Itle:-~all mKiLchen

One-Wal l-K I tohen

° w l . " , T -

ReLrleve From SpeciRcat, ion Rel, rleve From Construct.ion
Evaluate Example Add To Bookmarks
Switch Display Save Catalog

'3ategory Hierarchy

NIMG ~ i [NTRL 4TVI.E-K I TCHEN

IEUIOMEN~-$TYLE -~ | TCI4EM

~ U
~ootf/oatton

[e.6] Size of family? Smal l
O.=] Do both husband ~ wife wor~<? Both
1.6] ~/hs does the cooking? ~dt?a
6.1] Cook's apwoximat~ hGight? 5 ' - 5 ' 6 "

iS.el Right, Handed or left, handed? Le?¢
[I ; l l] How many meals are 9Gr.srally prepared a day'?

l .|.z| Do you usually use a dishwasher? No
11.6] Is safety import, ant, Us you? Ye. ¢
-Following conditioms should be kept For this specifi

cation:
• STOVE is away From t~INOO~.

I • STOVE is away from DOOR,/.
[Ih4] hre you inl, eresl,~d in an efDcient kitchen9 Yes

Show Ite~ 'Kuniyos-Kitchcn"
• Rdd To BookMarks
• Show I t e n 'Gerhard,-Kitchen"

Rdd IO Bookmarks
• Shou Iten "Jonethane-Kt~chen"
• Rdd l o Bookmarks
• Re t r i eve From Specification
• Shou I t e ~ "Cne-ga l l -K t t chen °

H I

lue 2 Bpr ! : 1 ~ : 3 1 kuntyo UL UHER: --User Input

Figure 6. CatalogExplorer
[The leftmost matching designs window lists all the currently retrieved design examples in the catalogue, ordered according to their appropriateness to
the current specification. The bookmarks window is used as a temporary name holder of catalogue items. The two panes in the middle show one of the
matching examples in detail (the top pane provides a set of slot values, and the bottom pane a floor layout). The category hierarchy window shows the
hierarchical structure of the catalogue. The specification window shows specified items with the assigned weight of importance (the result of Figure 7).
The items in this window are mouse-sensitive, and if one is clicked on, CatalogExplorer provides the information of the corresponding specification-
linking rules (two lines in the middle of the window). Clicking on one of the rules activates Janus Argumentation, which provides the underlying
argumentation for that rule (see Figure 5).]

space, providing users with a small set o f examples that
are relevant to the current construction and ordered by
the appropriateness to their specification. Users can
examine them one by one with a reasonable amount of
effort. If no objects that are appropriate to the current
task are found, users may modify the specification by
either selecting other answers in the specification sheet,
or changing the weights in the weighting sheet, or both.
After this is done, the retrieval from specification com-
mand reorders the examples. Users may use the retrieval
from construction command, and choose other criteria
for defining the similarity, which will retrieve another set
o f examples. Finally, they may decide which example
they want to use by bringing the example into the one of
the matching design examples window, and go back to ~
Janus Construction with the resume construction com-
mand. Janus Construction automatically shows the
selected example in the catalogue window of Janus Con-
struction (see Figure 4). Users can refer to this example
to get new ideas on how to proceed with their construc-
tions, or they may replace the current construction with
the example found.

R E T R I E V A L F R O M S P E C I F I C A T I O N

Issues related to specif ication

To use a partial specification to identify a relevant design
object, one must consider the following issues: types of
specification, weighting importance, and multiple con-
tradictory features.

Types of specification
It has been observed that there exist two types o f specifi-
cation for a design: surface features and hidden features.
For example, th e specification 'a kitchen that has a dish-
washer' is a surface feature that explicitly describes the
design, whereas 'a kitchen o f less than 100 ft 2' or 'a
kitchen that is good for a small child' are hidden features
of the design that are not explicitly expressed in the final
design artefact 23. Surface features are determined by the
structure o f a design, whereas hidden features are related
to functions o f the design, rather than to the structure 3°.
Hidden features can be computed or inferred only by the
use o f domain knowledge. There are two types o f specifi-
cations in hidden features, per se. Features such as 'a

Vol 5 N o 1 March 1992 21

' i . , | , . , . , - , " " , " , " , " , , " i . , . , - , , . , . , . , . i . , . , . , . , . , . , . , . ,

Speci f icat ion sheet.
i i

~Size of family? SMall l'lediur,~ Large Do-Hot-Care
~Do both husband and wife work? Either Both Do-Mot-Care
~IWho does the cook in9? Husband gife Senior House-Maid Do-Hot-Care
~Cook's approximate hei9ht? -5' 5 '-5 '6" 5'6"-6' 6 ' - Do-Mot-Care
~Ri9ht Handed or l e f t handed? Right Left Do-Mot-Care
~Hou many meals are 9enerally prepared a day? 1 2 3 More Do-Hot-Car
~Size of meals? Bi9 Mediur,, Snell Do-llot-Care
[i0o kids help cook or bake? Often Sometimes Meyer Do-Hot-Care
i iDo you usually use a dishwasher? Yes tlo Do-Hot-Care
i [Is safety important to you? Yes Mo Do-Mot-Care
~Rre you interested in an e f f i c ien t kitchen? Yes Ho Do-Mot-Care

Done ~Ibort I
. , - , . . , . . . , - , - , - , , - , . , . . . - . . . - ,

a

b

lSoecify the f@ctor of importance for e a c h specified i t e m .

S ize o f f a m i l y ? Sne l l

Do both husband and ulfe uork9 Both
~ho does the cooking? Wife
Book's approximate height? 5'-5'6"
~ i g h t H a n d e d or left h a n d e d ? Left
4 o u n a n y h e a l s a r e g e n e r a l l y p repa red a day? 2

Do you usually use a dishuasher? H o

Is safety important to you? Yes
Rre you interested in an efficient kitchen? Yes

Do I t []
I I I

L e a s t M 6 ~ t

n ooonBooo
[] BOOOOOOO O

B oOOBOOOO
oOOOOBOO

o OooooBoo []
[] DDOOBOOO []
[] BOOOOOOO []
[] DDOOOOOO B
[] ODBOOOOO []
Abort O

Figure 7. Specification component," (a) specification sheet, (b) weighting sheet for specification
[(a) The specify command in CatalogExplorer provides a specification sheet in the form of a questionnaire; (b) after specification, users weigh the
importance of each specified item.]

Design
Goal

0
0

8

Multifaceted Desi n Envi

Specification

its

% . .

:::iiii ::i!i::
':i;'

Catalog
~. Argumentation(Issue Base)

....... ,, $ ii i;i:

~? :Zii!! i

"ii!iiiii. :iiii ~ .~0 !~i~ii~

I Simulation Component I

Final 1
Specification

match

!

Final
Construction

mmmm~ • Evolution

................. t!i!:~ Influence/Reference

Figure 8. Coevolution of construction and specification of design in multifaceted architecture
[Starting with a vague design goal, designers go back and forth between the components in the environment. During the process, a designer and the
system cooperatively evolve a specification and a construction incrementally by utilizing the available information in an argumentation component
and a catalogue and feedback from a simulation component. In the end, the outcome is a matching pair of specification and construction. Sometimes,
the modification of a specification leads a designer directly to modify a construction, or vice versa. Instead of evolving them, a designer may replace the
current construction or specification by reusable design objects. A cycle ends when a designer commits the completion of the development.]

22 K n o w l e d g e - B a s e d Sys tems

Specification Construction

Figure 9. Task at hand in Janus

kitchen of less than 100 ft 2' are objective or judgmental,
whereas features such as 'a kitchen that is good for a
small child' are subjective. A set of formal rules can be
defined for the derivation of objective hidden features. In
contrast, subjective hidden features can be inferred only
relatively to one's viewpoint. That is, an inference of
whether a kitchen design is good for a small child is
subject to dispute, and may vary across time and society.

In practice, initial customer questionnaires given by
professional kitchen designers to their customers often
ask questions that relate to subjecti~ve hidden-feature
specifications. The expertise, or domain knowledge, of
the designers allows them to map these specifications
into concrete structural features.

Surface features are represented in terms of a solution
domain. In contrast, subjective hidden features are often
represented in terms of a problem domain. Mechanisms
for the retrieval of design objects from specifications
should, therefore, be different, according to their type.
Design examples can be retrieved from the catalogue by
surface-feature specification with a conventional query
mechanism, because they are already represented in a
solution domain. In contrast, for retrieval of the design
examples by hidden-feature specification, the system
must have the domain knowledge to interpret these
features into the solution structure.

Weighting importance
Sometimes, specified items contradict each other. If these
contradictions are among hidden features, users may not
notice the occurrence of the contradictions. Conse-
quently, the system cannot retrieve design examples from
the catalogue that satisfy their specification, because
such examples do not exist. For example, consider the
two specifications 'a safe kitchen' and 'a kitchen that
provides easy access to the dining area'. Although these
seem not to contradict each other, they do so in terms of
hidden features. As seen in Figure 5, a stove should be
away from a door for the first specification, whereas a
stove should be close to a door for the second one.

To resolve the contradiction, users must prioritize the
specifications, and make tradeoffs. They have to differen-
tiate the importance of the specifications by assigning a
weight to each specification item. If users specify that 'a
safe kitchen' is more important to them, kitchen designs
in which the stove is away from a door are more appro-
priate to the users' specification than others.

Multiple contradictory features
One design object may have multiple contradictory
features, i.e. hidden features that semantically contradict
each other. For example, there can be a kitchen design in
which some of the relationships of the appliances in the
example are 'good for a large family', whereas other
relationships in the design are 'bad for a large family'. In
practice, some parts of a design may serve purposes that

are contradictory to those of other parts of the same
design.

Mechanisms

Specification-linking rules
CatalogExplorer automatically infers subjective hidden
features of design examples in the catalogue by using
domain knowledge in the form of specification-linking
rules. The specification-linking rules link each subjective
hidden-feature specification item to a set of physical-
condition rules. For example, in the middle of the specifi-
cation window in Figure 6, two rules are shown ('stove is
away from door' and 'stove is away from window') that
are conditions for a kitchen to have the hidden feature 'a
safe kitchen'.

Previous versions of CatalogExplorer required design
examples to have explicitly specified values for good-for
and bad-for slots to represent subjective hidden features.
This approach relied on the questionable assumption
that one could identify a priori which features would
become relevant later. Such features may, however,
become obsolete under new circumstances (e.g. an inef-
ficient kitchen design may become efficient by the intro-
duction of new appliances, such as a microwave cooker).
Designers may not be able to articulate all the subjective
features of a design, and, even if they could do so, such
features may be difficult to understand.

The important aspect of the specification-linking rules
is that these rules can be dynamically derived from the
content of Janus Argumentation (see Figure l 1). Sup-
pose that the system has the following internal represen-
tation* for thefire hazard argument shown in Figure 5:

--1 (Away-from-p STOVE D O O R) --* F I R E - H A Z A R D O U S

(1)

and the system has the domain knowledge*

SAFETY --~ --3 F I R E - H A Z A R D O U S (2)

When users specify that they are concerned about safety,
the system infers that design examples with a stove that is
away from a door are appropriate to their needs by the
following inference. First, Expression 1 is equivalent to
the following:

----7 F I R E - H A Z A R D O U S --* (Away-from-p STOVE D O O R)

(3)

Therefore, by the use of Expressions 2 and 3,

Expression 2 ^ Expression 3 ~ (SAFETY --* (Away-
from-p STOVE DOOR)) (4)

Appropriateness to set of specifications
To deal with some of the issues mentioned above, Cata-
logExplorer provides a mechanism for assigning a weight

*Symbols such as FIRE-HAZARDOUS and SAFETY represent concepts as
constant values, whereas STOVE and DOOR represent classes of design
units. Away-from-p is a predefined predicate that computes a distance
between two design units, and returns TRUE if[it exceeds a certain
amount.
*This should read 'for a kitchen to be safe, it needs to be not fire-
hazardous ' .

Vol 5 No 1 March 1992 23

Retrieve From Specification Retrieve From Const.ruction
E v a l u a t e Example ~ d d To Bookmark;
S w i t c h D i s p l a y Save Cata lo@

O ~ l o g E x p l o r e r T ~'~.~
~ e t r l ~ , e

~ : 1 ~ e ~ L i o n
i

~ c t ~ l t ~ d oe~ign Exatnple~,
~ i t . e h e n ¢ ~ 1) [THING - '

Dealan unite us~a in the current conntruction, 5elect any r',urlbec of'
Do it

All
Car~cel

i[pefllrlsula-kltCh~n ¢t30~
r~

Clot)

Figure 10. Retrieve frorn construction
[The retrieve from construction command, with a parsing topic 'design unit types', analyses the current construction, and provides a list of all the design
unit types being used in the construction. Users can then select which design unit types they consider to be most important for the location of prestored
designs in the catalogue.]

a stove be? ~ ~ ~ 1 hould
from a door. ~ n ' I
tove is not away from a door, ~o me. ,J

[it is fire-hazardous. [

L ~ (away-from stove door) -> f i re -hazardous

• • . . • .
a e c t ~ c a t t o n h n k m ~ r u l f

safety -> (away-from stove door}

1881 I owlfl~
I

Figure 11. Specification-linking rules in CatalogExplorer

to each specification item, and it uses the concept of the
appropriateness of a design example to a set of specifica-
tion items. The appropriateness of a design in terms of a
set of specification items is defined as follows:

Definition: S l , S 2 S n is a set of specification items with
weights Wl,W2 w,, respectively. For each specification
item S~, let Ru0 = 1...mi) be a set of physical necessary
conditions that are specified by a specification-linking
rule. Let E be an example design, and define E(R) as
follows:

1 condition R is satisfied in E
E(R) = 0 otherwise

Then the appropriateness of design E in terms of a set of
specifications S = {(Sl,wO,(S2,w2) (S,,w,)} is defined as
follows:

£ { (tE(Ru) /mi)w ,}
i = l j = l

As a simple example, suppose that a user specifies one
item 'is safety important to you? Yes' with a weight of
0.8. The physical necessary conditions of this item are 'a
stove is away from a door ' and 'a stove is away from a
window', as seen in the specification window in Figure 6.
Therefore, a kitchen design that has a stove that is away

from a door but close to a window is given the appropri-
ateness value of 0.4 = (1 + 0)/2 x 0.8.

RETRIEVAL FROM CONSTRUCTION

For the retrieval of design examples that are related to a
partial construction, one must deal with the issues of the
matching of design examples in terms of the surface
features of a design, i.e. at a structural level. The issues
discussed in the previous section of the paper, such as
partial matching and factor of importance, also hold
here.

Domain-specific parsers analyse the design under con-
struction. They represent the user's criteria for the articu-
lation of the task at hand from a partial construction. In
other words, they determine how similarities between the
partial construction and a design example in the cata-
logue are to be defined for the retrieval of design exam-
ples from the catalogue.

CatalogExplorer supports the following two parsers.
Users have a mechanism for choosing which parser they
want to use.

• Design unit types: Search for examples that have the
same design unit types as the current construction.
The system first analyses the current construction,
and then finds which design unit types are used, and
provides the user with a menu to select some of them
(see Figure 10).

• Configuration of design units: Search for examples
that have the same configuration of design units. For
example, if the current construction has a dishwasher
next to a sink, the examples that match this configu-
ration element are retrieved.

RELATED WORK

The use of catalogues in design raises many problems in
common with case-based reasoning. The authors ' system
serves as a case-based decision-aiding system 3~ in a design
domain rather than providing a mechanism for auto-
mated adaptation. The approach of case retrieval des-
cribed in this paper offers some advantages over conven-

24 Knowledge-Based Systems

tional retrieval techniques by using synergy based on the
integration.

Conventional retrieval techniques that are used in
case-based reasoning systems are often applicable only to
domains in which problems can be clearly articulated,
such as word pronunciation 32. These systems are unable
to deal with fluctuations of problem specifications, and
are inadequate for ill defined problems.

In Julia 33, problem and solution structures must be
articulated in frame representations before a retrieval
process is started. The value frames used in Julia provide
the rationale behind a design decision. This can be used
for the retrieval of cases. CatalogExplorer needs to inte-
grate mechanisms to support the recording of the design
rationale for this purpose 34.

Most case-based reasoning systems require represen-
tations of cases to be predetermined, and they are there-
fore not feasible. The approach presented in this paper
addresses an indexing problem 23 by (a) focusing on use-
fulness rather than structural similarities, (b) combining
abstract and surface features, and (c) providing dynamic
indexing, which means putting the index at the retrieval
time rather than the compilation time. The use of the
specification-linking rules can be regarded as a type of
analogical matching, such as the systematicity-based
match in Cyclops 35. In Cyclops, however, the explana-
tions associated with cases must be predetermined, and
cannot be dynamically computed.

The Interface system 36 provides interesting mecha-
nisms for addressing some of the issues that relate to
matching rules. One of them is the use of abstraction
hierarchies for dealing with the issue of partial matching,
which could be used in CatalogExplorer to support
retrieval from construction. Another mechanism is that
of differentiating the importance of design features. This
is similar to the weighting sheet in CatalogExplorer, but it
requires the features to be linearly ordered. Assigned
importance values in the authors' system enable users to
deal with more complex contradictory features. As it was
built for the purpose of constructing a case-based library,
the Interface system supported these mechanisms only
while storing cases in the library. In the authors' work,
the retrieval processes are driven by the user's task at
hand, requiring that the weights be determined at the
retrieval time, rather than at the time when the cases are
stored. The Interface system supports the creation of
such matching rules only in an ad hoc manner. The
integrated architecture of CatalogExplorer enables the
specification-linking rules to be derived from the argu-
mentation component associating the rules with a clearly
stated rationale. Consequently, CatalogExplorer
provides causal relationships between situations (specifi-
cation) and solutions (constructions).

By the use of the environment over time, cases are
collected incrementally. The system allows users to store
design examples in the catalogue without checking for
duplications and redundancies. Other systems store only
prototypes 3°, or prototypes and a small number of exam-
ples that are variations of them 36. These approaches
allow users to access good examples easily, and prevent
the chaotic growth of the size of the catalogue. However,
by not including failure cases, these catalogues prevent
users from learning what went wrong in the past.

The integration relieves users of the task of specifying

their goals for case retrieval. The task is articulated by
other components in the environment.

D I S C U S S I O N O F C A T A L O G E X P L O R E R

Achievements

In CatalogExplorer, users gradually narrow a catalogue
space. The system can dynamically infer subjective hid-
den features, and provide users with an explanation for
the inference mechanism. The system retrieves examples
that are similar to the current construction, providing
users with further directions in which to proceed with the
design, or warning them of potential failures. Using the
retrieved information, they can incrementally evolve a
specification and a construction in Janus. The retrieval
mechanisms of the system allow users to access infor-
mation that is relevant to the task at hand without
requiring the users to form queries. Control of, and
responsibility for, the retrieval of information is shared
between the user and the system 4.

The authors' design environments empower both inex-
perienced and experienced designers. The system is use-
ful for inexperienced designers, because it supports learn-
ing on demand 37. It is useful for experienced designers,
because it allows them to accumulate incrementally
domain knowledge into the system. The authors' belief
(which is based on interaction with numerous 'experts')
is that even expert knowledge is never complete, because
design situations are idiosyncratic and unique.

Limitations

A major limitation of the current system is the relatively
small size of the catalogue (which comprises fewer than
100 examples). Many problems of managing large spaces
effectively have not been dealt with. However, the auth-
ors are concerned~about the scarce cognitive resource of
humans, and not much concerned about computational
resources. A lack of mechanisms for associating formal
representations with arguments forces the manual deri-
vation of the specification-linking rules. The definition of
appropriateness is limited, and it needs a more sophisti-
cated mechanism, such as the spreading of activation 38.
The parsers for the analysis of partial constructions
should be extended to deal with more abstract levels,
such as an emerging shape (e.g. an L shape or U shape)
that currently requires to be specified by the user. A
combinatorial use of the structural features for the detec-
tion of emerging features should be explored, such as the
connectionism approach described by Newton and
Coyne 39.

Future work

Future extensions of integrated design environments
based on the multifaceted architecture include the
following:

• Level of assembly: The use of Janus by kitchen
designers has shown that the designers work not only
with design units, but with higher-level abstractions,
such as cooking centres and clean-up centres. These
centres should be integrated into the palette, eliminat-
ing the clear distinction between the elements in the

Vol 5 No 1 March 1992 25

palette and the catalogue. The catalogue should con-
tain not only completed designs, but also important
partial designs. These extensions will require further
consideration of such issues as how to focus on a
solution 23.

• Support for other transition links: A partial specifica-
tion can be used to determine the set of relevant
arguments in the argumentation component, enabling
one to rearrange dynamically the argumentation
space. A link between construction and specification
can reduce the set of relevant units that is displayed in
the palette.

• Extensions of the architecture: The authors' design
environment for user-interface design'4, 2' has been
improved greatly in its effectiveness by the introduc-
tion of a checklist component to help users to struc-
ture and organize their design activities. The integ-
ration of the checklist into the multifaceted
architecture has to be explored further.

• End-user modifiability: In the development of design
environments, domain knowledge should be built into
a seed. As users use the environment constantly, this
seed should be extended. Sophisticated mechanisms
for end-user modifiability '6 are crucial for this evolu-
tion of seeded environments.

BEYOND THE MACHO APPROACH OF
ARTIFICIAL I N T E L L I G E N C E

The authors' primary goal is to build cooperative
problem-solving systems that empower humans, rather
than to build expert systems that replace them 4,4°. They
have pursued this approach not only because (a) auto-
mation approaches, have failed in many domains (e.g.
software design 4', the machine translation of natural lan-
guage42), or (b) serious doubts have been articulated
about 'in principle' limitations of expert systems 43,6, but
also because they are convinced that humans enjoy
'doing' and 'deciding'. People often enjoy the process, and
not just the final product; they want to take part in
something. This is why they build model trains, plan
their vacations, and design their own kitchens.

Automation can be a two-edged sword. At one
extreme, it is a servant, relieving humans of the tedium of
low-level operations, and freeing them for higher cogni-
tive functions. Many people do not enjoy checking docu-
ments for spelling errors, and they welcome the automa-
tion that is provided by spelling checkers in word
processors. At the other extreme, automation can reduce
the status of humans to that of 'button pushers', and can
strip their work of its meaning and satisfaction. The
challenge is to automate tasks that people consider
tedious or uninteresting; these may change as technology
changes.

The authors' approach is to build knowledge-based
design environments, but these are very different from
expert systems. They aim to inform and support the
judgment of designers, not to 'deskill' them by judging or
designing for them. Designers that use these systems are
free to ignore, turn off and alter the critiques given by the
systems.

Building cooperative problem-solving systems allows
the authors to exploit the relative strengths of the two
participants to their advantage, i.e. humans are creative
and can put tasks into larger contexts, whereas

computers are good and dependable as depositories and
managers of large amounts of information (such as
building codes, safety rules, or the functional and aes-
thetic principles in Janus). The authors are interested in
building 'human-centered' cooperative problem-solving
systems (rather than 'computer-centered' ones), and it is
for this reason that Schrn's approach is valuable,
because he has been involved in finding psychological
explanations of human design activities.

Impact of Schfin's work on authors' approach

As is evident throughout this paper, the authors' think-
ing and work has been influenced by Schrn 7,8, as well as
others (e.g. Ehn 44, Lave 45, Rittel 2, Simon 9, Suchman43
and Winograd and Flores6). The major principle of
Schrn's work, and its influence on the authors' work, can
be summarized as follows:

• Design is a conversation with the materials of a design
situation: This principle is operationalized by the
creation of domain-oriented design environments that
support human problem-domain communications,3.
The 'materials' of the design situation are not low-
level computer abstractions, but objects with which
the domain worker is familiar. The domain orien-
tation acknowledges that knowledge does not exist by
itself in the form of context-free information, but is
part of the practice of specific communities.

• Situations need to talk back." The 'back talk' is
provided by the design situation itself, as well as by
agents (who are, in Schrn's case, humans, and in the
authors' case, computational critics). It is important
for the 'back talk' that it is relevant to the actual
design situation, and that it is articulated in such a
way that the designer can understand it.

• Reflection in action: The authors pay tribute to this
concept by integrating construction and argumen-
tation with the help of critics 46,47. This integration is
important, because (a) it creates a context-sensitive
mechanism that provides entry into the hypermedia
issue base in which argumentation that is relevant to
the constructive design situation can be found, and
(b) it makes designers aware that they may need addi-
tional information. Reflective processes are triggered
by violations of the principles of design, but the auth-
ors' systems allow reflection on the principles of
design themselves, as well.

• Integration of problem setting and problem solving:
Schrn shares the belief with other design methodolo-
gists, such as RitteP, (and provides empirical evidence
for it) that practitioners who solve problems do not
operate in a given solution space, but that this space is
incrementally constructed in response to solution
attempts.

• Design knowledge is tacit." Competent practitioners
usually know more than they can say. Their tacit
knowledge is triggered by new design situations, and
by breakdowns that occur as they engage in a design
process. This requires that design worlds be not
closed, but open-ended. This leads to developments in
the authors' work to support end-user modifiability '6
and the evolution of design environments (starting
with seeded environments) in response to new design
problems.

26 Knowledge-Based Systems

Emphasis on the different demands of rigour versus
relevance: Sch6n illustrates the different demands of
rigour versus relevance, and shows that practitioners
need to be more concerned with relevance than
rigour. Although the authors' critiquing systems and
case libraries are weak with respect to formal rigorous
criteria (such as completeness and consistency), they
provide relevant information in actual design situa-
tions aS.

Moving beyond Schiin's work

The authors' work starts with the principles mentioned
in the previous sections of the paper, and asks 'how can
they be facilitated in computer-based tools?'. Sch6n's
interest is not in building systems that assist designers in
design tasks; he is interested in finding psychological
explanations of the designer. His theory is descriptive,
and it identifies the importance of human resources in
this process (e.g. as illustrated by the scenario between
Petra and Quist, in which Quist acts as a critic for Petra
(Reference 7, pp 79-104)).

The authors' interest is in Understanding how
designers design, how designers might organize designing
so that they are more effective, avoid problems, and learn
new things as they go along, and how all of this can be
supported by computational media. They have engaged
in something that Sch6n's theory considers important:
building objects to think with in the forms of demon-
stration prototypes (design environments) to test the
theory in practice, experience breakdowns of the theory,
and, as a consequence, refine the theory when necessary.
Sch6n's own work has not followed his theory: the inter-
twining of theory building (reflection) with theory
instantiation (action) would make it so. In the authors'
work, they have demonstrated that computational
mechanisms can be created that can take some of
Sch6n's concepts and bring them alive in a computatio-
nal environment.

Importance of domain-oriented architecture
Skilled domain workers, unlike designers, know what the
job is. However, they do not know what can be designed.
If this observation is correct, then 'design should be done
with users, neither for them nor by them'. Work-oriented
design 44 is based on the assumption that design for an
'ideal situation' is impossible; it is essential to design for
the work that people do, rather than for a disembodied,
idealized description of the work process. The authors
support Schfn's concept of knowing in action through
the use of domain-oriented construction kits, which
allow designers to work directly with the concepts of the
problem situation itself, rather than requiring them to
work with computer-oriented concepts. This approach
pushes the computer into the background, and turns it
into an invisible instrument, which Schrn describes as
necessary for knowing in action.

Critiquing systems
Schrn's framework is based on the basic cycle of'seeing-
drawing-seeing'. However, Sch6n's notion of seeing is
'not good enough'; as Rittel pointed out, 'buildings do
not speak for themselves'. Nonexpert designers (and this
is what designers are, in almost all realistic situations) do
not have the complete knowledge and experience to

understand fully the conversation with the materials of
the situation. Critiquing mechanisms 49 serve as 'inter-
preters' that support designers in seeing and understand-
ing the 'back talk' of the situation. When a critic fires,
reflection does not occur on the simple basis of the mess-
age. Designers 'listen to' the design material with the help
of the interpreter in the form of a critic. The authors'
critiquing systems address the problem of the situations
created by technological advances and the division of
labour - - situations in which more and more designers
deal with objects that do not primarily belong to their
communities of practice.

Critics provide a computational mechanism that
allows designers to think about what they are doing
while this thinking can still make a difference. For a
situation to talk back, a human has to understand the
information that is being given. The difference between
'feedback of the system' and 'back-talking situations' is
related to the understanding of humans. Relevancy to
the task at hand seems to play an important role here,
because the more given information is relevant to the
current problem situation, the more understandable the
information is for a human.

Integrated design environments
The authors' design environments can exploit the infor-
mation that is contained in partial specifications and
partial constructions to increase the contextualization of
the materials of the situation to the task at hand. Work
objects, which are explicitly represented in the authors'
environments, play a crucial role in cooperation between
designers, designers and clients, and designers and users.
The lack of the work objects in nonintegrated, detached
reflection-support systems (e.g. glBIS 5°) makes it imposs-
ible for users to access relevant information in terms of
the artefact.

Sch6n describes knowing in action as a spontaneous,
nonreflective and unselfconscious engagement in an
action such as the construction of a solution form.
According to him, it cannot take place when designers
are forced to reflect on every move that they make, or
when the tools become too obtrusive. The authors sup-
port knowing in action by separating the construction
and argumentation components so that designers can
construct the solution form without explicit reflection,
unless there is a breakdown of knowing in action.

Evolution
Design knowledge is tacit, and design worlds are open-
ended. Users of design environments must be able to
extend them in response to breakdowns. The human
practice of carrying out tasks evolves over time, and a
cooperative problem-solving system must be adaptable
and/or adaptive to reflect these changes. The boundary
between what a human does and what the system does in
a semiformal architecture changes over time, because the
understanding of what can be formalized grows over
time as people reflect on their jobs and establish routines.
The authors are in the process of constructing seeded
environments for domains that serve as the background
information against which specific design projects can be
carried out. At the same time, each new design project
contributes toward the further development of the seed.

Vol 5 No 1 March 1992 27

Exploiting unique possibilities of computers as medium
In noncomputational environments, 'seeing' can be
enhanced by training, or supported by a human. Compu-
tational environments create the unique opportunity to
place some of the subjective seeing burden on the compu-
tation. The environments need to remediate for the per-
ceptually untrained, and engage them in reflective con-
versation at the level that they can handle, and teach
them to see. Beyond remediation for lack of perceptual
training, there are many facts about designs that even the
most well trained can never see directly, but that compu-
tation can visualize for them. If designers are willing to
annotate their work products, computers can deliver this
additional information to future designers 47.

Issues for further investigation

By engaging in reflection in action with the use of com-
putational environments, the authors have created situa-
tions that talk back to them. Their system-building
efforts, and the use of those systems, create breakdowns,
which trigger further reflection, creating a large number
of interesting issues that should be pursued. Among
these are careful studies of the use of the authors'
environments by domain workers that should investigate
the following specific issues:

• Are there differences in the performance and quality
of the product if the system is used with and without
critics, the catalogue and the simulation components?

• What are the tradeoffs between running the system in
a critiquing mode or a constraint mode 51, where the
latter prevents certain problems from arising (e.g. by
enforcing building codes), whereas the former
provides designers with opportunities of dealing with
breakdowns?

• What are the tradeoffs between different intervention
strategies, e.g. the balance between displaying enough
information versus the disruption of the work pro-
cess? When are designers willing to suspend the con-
struction process to access relevant information?
Does 'making information relevant to the task at
hand' prevent serendipity?

• If an environment can always supply the information
that the situation demands, why will users bother to
learn the information37? How can working and learn-
ing be better integratedS2?

• Under which conditions will designers challenge or
extend the knowledge represented in the system? How
can they be motivated to do so?

• Should the 'back talk' be embedded directly into the
artefact, or handled by a separate discourse? It is
conceivable that diving into hypermedia focuses users
on other tasks, and takes them out of the situation.

• If information is plentiful, what is scarce? How can
information-delivery systems be created that make
information more relevant to the task at hand?

• To what extent are situations and reflective conver-
sations controlled by media properties?

• How can a balance be achieved between technical
rationality (e.g. the use of plans and rules) and reflec-
tive action44,43? People do use plans (e.g. milestone
charts and business plans). Designers, by making and
following systematic agreements (rules) about the
selection and position of eleme.nts, can work more

effectively as a team. Even if one agrees that 'design is
more than the application of standard principles', one
cannot infer that principles cannot be useful.

CONCLUSIONS

Design activities incorporate many cognitive issues, such
as the recognition and framing of a problem, the under-
standing of given information, and the adaptation of the
information to the situation. The integration of problem
setting and problem solving is crucial in dealing with ill
defined problems. This paper has described mechanisms
that relate partial specifications and partial constructions
to a catalogue of prestored designs, thereby retrieving
design objects stored in a catalogue that are relevant to
the task at hand without the users being asked to form
queries. The system demonstrates the synergy of inte-
grated design environments, empowering human
designers. It does not force human designers to use the
mechanisms described above. The authors' environments
provide mechanisms and resources that are available
whenever humans need them. As a number of research
efforts have demonstrated, the multifaceted architecture
developed in the context of this work is a promising
architecture for the building of a great variety of inte-
grated design environments in different domains.

The work has profited from the conceptual framework
of Donald Sch6n, and, at the same time, it has tried to
extend his ideas by instantiating them with computatio-
nal mechanisms. Design should be understood and prac-
tised as a 'dialectical process between tradition and
transcendence TM. From this perspective, Sch6n's work is
limited, because it neither suggests, nor tries to invent,
design methodologies and cooperative problem-solving
systems that are driven by how things might be done
differently, rather than by how things have always been
done.

A C K N O W L E D G E M E N T S

The authors would like to thank Mark Gross and Ray-
mond McCall (University of Colorado at Boulder,
USA), Will Hill (Bellcore), Anders Morch (Nynex),
Loren Terveen (AT&T, USA) and Dave Wroblewski
(USWest, USA) for their insightful comments on the
relationship of Sch6n's work to the authors' work. The
authors would also like to thank the members of the
human-computer communication group at the Univer-
sity of Colorado, who contributed to the conceptual
framework and the systems discussed in this paper. The
research was supported by Software Research Associates
Inc. (Tokyo, Japan), by the US National Science Foun-
dation under Grants IRI-8722792 and IRI-9015441, and
by the US Army Research Institute under Grant
MDA903-86-C0143.

REFERENCES

1 Simon, H A 'The structure of ill-structured problems'
Artif. lntell. No 4 (1973) pp 181-200

2 Rittel, H W J 'Second-generation design methods' in
Reference 3, pp 317-327

3 Cross, N Developments in Design Methodology John
Wiley, USA (1984)

4 Fischer, G 'Communications requirements for coo-

28 Knowledge-Based Systems

perative problem solving systems' Int. J. Inf. Syst.
Vol 15 No 1 (1990) pp 21-36 (special issue on know-
ledge engineering)

5 Stefik, M J 'The next knowledge medium' AI Maga-
zine Vol 7 No 1 (1986) pp 34--46

6 Wine,grad, T and Flores, F Understanding Computers
and Cognition: A New Foundation for Design Ablex,
USA (1986)

7 Sehiin, D A The Reflective Practitioner: How Pro-
fessionals Think in Action Basic Books, USA (1983)

8 Sehiin, D A Educating the Reflective Practitioner Jos-
sey-Bass, USA (1987)

9 Simon, H A The Sciences of the Artificial MIT Press,
USA (1981)

l0 Fischer, G and Reeves, B N 'Beyond intelligent inter-
faces: exploring, analyzing and creating success
models of cooperative problem solving' Appl. Intell.
(in press) (special issue on intelligent interfaces)

11 Sheil, B A 'Power tools for programmers' Datama-
tion (Feb 1983) pp 131-144

12 Hutehins, E L, Hollan, J D and Norman, D A 'Direct
manipulation interfaces' in Norman, D A and Draper,
S W (Eds.) User Centered System Design, New
Perspectives on Human-Computer Interaction Law-
rence Erlbaum, USA (1986) pp 87-124

13 Fischer, G and Lemke, A C 'Construction kits and
design environments: steps toward human problem-
domain communication' Human-Comput. Interact.
Vol 3 No 3 (1988) pp 179-222

14 Lemke, A C 'Design environments for high-functio-
nality computer systems' PhD Dissertation Dep.
Computer Science, University of Colorado at
Boulder, USA (Jul 1989)

15 Nielsen, J and Richards, J T 'The experience of learn-
ing and using Smalltalk' IEEE Software (May 1989)
pp 73-77

16 Fischer, G and Girgensohn, A 'End-user modifiability
in design environments' Proc. CHI'90 Conf. Human
Factors in Computing Systems ACM, USA (1990) pp
183-191

17 Fischer, G, Henninger, S and Redmiles, D 'Intertwin-
ing query construction and relevance evaluation'
Proc. CHI'91 Conf. Human Factors in Computing
Systems ACM, USA (1991) pp 55-62

18 Henninger, S 'Defining the roles of humans and
computers in cooperative problem solving systems
for information retrieval' Proc. AAAI Spring Symp.
Wkshp. Knowledge-Based Human-Computer Commu-
nication (Mar 1990) pp 46-51

19 Halasz, F G 'Reflections on NoteCards: seven issues
for the next generation of hypermedia systems' Com-
mun. ACM Vol 31 No 7 (1988) pp 836-852

20 Fischer, G, McCall, R and Moreh, A 'JANUS: inte-
grating hypertext with a knowledge-based design
environment' Proc. Hypertext'89 ACM, USA (1989)
pp 105-117

21 Lemke, A C and Fischer, G 'A cooperative problem
solving system for user interface design' Proc. 8th
Nat. AAAI'90 Conf. Artificial Intelligence AAAI
Press, USA (1990) pp 479-484

22 McCall, R 'Issue-serve systems: a descriptive theory
of design' Des. Methods & Theor. Vol 20 No 8 (1986)
pp 443-458

23 Kolodner, J L 'What is case-based reasoning?' 8th
Nat. AAAI'90 Conf. A)~tificial Intelligence Tutorial

Text on Case-Based Reasoning AAAI Press, USA
(1990) pp 1-32

24 Riesback, C K and Sehank, R C Inside Case-Based
Reasoning Lawrence Erlbaum, USA (1989)

25 Fischer, G, Lemke, A C, M~taglio, T and Moreh, A
'Using critics to empower users' Proc. CHI'90 Conf.
Human Factors in Computing Systems ACM, USA
(1990) pp 337-347

26 Rissland, E L and Shalak, D B 'Combining case-
based and rule-based reasoning: a heuristic
approach' Proc. l l th Int. Joint Conf. Artificial Intelli-
gence Morgan Kaufmann, USA (1989) pp 524-530

27 Patel-Schneider, P F 'Small can be beautiful in know-
ledge representation' AI Technical Report 37 Schlum-
berger Palo Alto Research, USA (Oct 1984)

28 Fischer, G and Nieper-Lemke, H 'HELGON: extend-
ing the retrieval by reformulation paradigm' Proc.
CHI'89 Conf. Human Factors in Computing Systems
ACM, USA (1989) pp 357-362

29 Williams, M D 'What makes RABBIT run?' Int. J.
Man-Machine Stud. Vol 21 (1984) pp 333-352

30 Gero, J S 'Design prototypes: a knowledge represen-
tation schema for design' AI Magazine Vol 11 No 4
(1990) pp 26-36

31 Kolodner, J L 'Improving human decision making
through case-based decision aiding' AI Magazine Vol
12 No 2 (1991) pp 52-68

32 Stanfill, C and Waltz, D L 'The memory-based rea-
soning paradigm' Proc. Case-Based Reasoning
Wkshp. Morgan Kaufmann, USA (1988) pp 414-424

33 Kolodner, J L 'Extending problem solving capabili-
ties through case-based inference' Proc. Case-Based
Reasoning Wkshp. Morgan Kaufmann, USA (1988)
pp 21-30

34 Fischer, G, Lemke, A C, McCall, R and Morch, A
'Making argumentation serve design' Technical
Report Dep. Computer Science, University of Color-
ado at Boulder, USA (1991)

35 Navinchandra, D 'Case-based reasoning in CYC-
LOPS' Proc. Case-Based Reasoning Wkshp. Morgan
Kaufmann, USA (1988) pp 286-301

36 Riesbeck, C K 'An interface for case-based know-
ledge acquisition' Proc. Case-Based Reasoning
Wkshp. Morgan Kaufmann, USA (1988) pp 312-326

37 Fischer, G 'Supporting learning on demand with
design environments' Proc. Int. Conf. Learning
Sciences 1991 Evanston, IL, USA (Aug 1991) pp
165-172

38 Hennlnger, S 'Retrieving software objects in an exam-
ple-based programming environment' Proc.
SIGIR'91 Chicago, IL, USA (October 1991) (in
press)

39 Newton, S and Coyne, R D 'Impact of connectionist
systems on design' in Gero, J (Ed.) Artificial Intelli-
gence in Design Butterworth-Heinemann, UK (1991)
pp 49-75

40 Fischer, G and Nakakoji, K 'Making design objects
relevant to the task at hand' Proc. 9th Nat. AAAI'91
Conf. Artificial Intelligence AAAI Press, USA (1991)
pp 67-73

41 Barstow, D 'A perspective on automatic program-
ruing' Proc. 8th Int. Joint Conf. Artificial Intelligence
Morgan Kaufmann, USA (1983) pp 1170-1179

Vol 5 No 1 March 1992 29

42 Kay, M 'The proper place of men and machines in
language translation' Technical Report CSL-80-11
Xerox Palo Alto Research Center, USA (Oct 1980)

43 Suchman, L A Plans and Situated Actions Cambridge
University Press, UK (1987)

44 Ehn, P Work-Oriented Design of Computer Artifacts
Almquist & Wicksell, Sweden (1988)

45 Lave, J Cognition in Practice Cambridge University
Press, UK (1988)

46 McCall, R, Fischer, G and Morch, A 'Supporting
reflection-in-action in the Janus Design Environ-
ment' in McCullough, Met aL (Eds.) The Electronic
Design Studio MIT Press, USA (1990) pp 247-259

47 Fischer, G, Grudin, J, Lemke, A C, McCall, R,
Ostwald, J and Shipman, F 'Supporting asynchro-
nous collaborative design with integrated knowledge-
based design environments' Technical Report Dep.
Computer Science, University of Colorado at
Boulder, USA (1991)

48 Simon, H A 'Alternative representations for cogni-
tion: search and reasoning' Technical Report Dep.
Psychology, Carnegie Mellon University, USA
(1991)

49 Fischer, G, Lemkc, A C, Mastaglio, T and Morch, A
'The role of critiquing in cooperative problem solv-
ing' A CM Trans. Inf. Syst. (in press)

50 Conklin, J and Begeman, M 'glBIS: a hypertext tool
for exploratory policy discussion' Proc. Conf.
Computer Supported Cooperative Work ACM, USA
(1988) pp 140-152

51 Gross, M D and Boyd, C 'Constraints and knowledge
acquisition in Janus' Technical Report Dep.
Computer Science, University of Colorado at
Boulder, USA (1991)

52 Fischer, G, Lemke, A C and McCall, R 'Towards a
system architecture supporting contextualized learn-
ing' Proc. 8th Nat. AAAI'90 Conf. Artificial Intelli-
gence AAAI Press, USA (1990) pp 420-425

30 Knowledge-Based Systems

